Publications

(*) denotes equal contribution

2025

  1. arXiv
    Alchemist: Turning Public Text-to-Image Data into Generative Gold
    Valerii Startsev, Alexander Ustyuzhanin, Alexey Kirillov, Dmitry Baranchuk, and Sergey Kastryulin
    May 2025
  2. ICML
    Inverse Bridge Matching Distillation
    Nikita Gushchin, David Li, Daniil Selikhanovych, Evgeny Burnaev, Dmitry Baranchuk, and Alexander Korotin
    In International Conference on Machine Learning, Jul 2025
  3. arXiv
    Scale-wise Distillation of Diffusion Models
    Nikita Starodubcev, Denis Kuznedelev, Artem Babenko, and Dmitry Baranchuk
    Mar 2025
  4. CVPR
    Switti: Designing Scale-Wise Transformers for Text-to-Image Synthesis
    Anton Voronov, Denis Kuznedelev, Mikhail Khoroshikh, Valentin Khrulkov, and Dmitry Baranchuk
    In Computer Vision and Pattern Recognition (CVPR), Jun 2025

2024

  1. arXiv
    Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization
    Mikhail Persiianov, Arip Asadulaev, Nikita Andreev, Nikita Starodubcev, Dmitry Baranchuk, Anastasis Kratsios, Evgeny Burnaev, and Alexander Korotin
    Oct 2024
  2. NeurIPS
    Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps
    Nikita Starodubcev, Mikhail Khoroshikh, Artem Babenko, and Dmitry Baranchuk
    In Neural Information Processing Systems, Dec 2024
  3. arXiv
    Accurate Compression of Text-to-Image Diffusion Models via Vector Quantization
    Vage Egiazarian*, Denis Kuznedelev*, Anton Voronov*, Ruslan Svirschevski, Michael Goin, Daniil Pavlov, Dan Alistarh, and Dmitry Baranchuk
    Sep 2024
  4. Results of the Big ANN: NeurIPS’23 competition
    Harsha Vardhan Simhadri, Martin Aumüller, Amir Ingber, Matthijs Douze, George Williams, Magdalen Dobson Manohar, Dmitry Baranchuk, Edo Liberty, Frank Liu, Ben Landrum, Mazin Karjikar, Laxman Dhulipala, Meng Chen, Yue Chen, Rui Ma, Kai Zhang, Yuzheng Cai, Jiayang Shi, Yizhuo Chen, Weiguo Zheng, Zihao Wan, Jie Yin, and Ben Huang
    Sep 2024
  5. CVPR
    Your Student is Better Than Expected: Adaptive Teacher-Student Collaboration for Text-Conditional Diffusion Models
    Nikita Starodubcev, Artem Fedorov, Artem Babenko, and Dmitry Baranchuk
    In Computer Vision and Pattern Recognition (CVPR), Jun 2024

2023

  1. ICCV
    DeDrift: Robust Similarity Search under Content Drift
    Dmitry Baranchuk, Matthijs Douze, Yash Upadhyay, and I. Zeki Yalniz
    In International Conference on Computer Vision (ICCV), Oct 2023
  2. ICML
    TabDDPM: Modelling Tabular Data with Diffusion Models
    Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko
    In International Conference on Machine Learning, Jul 2023
  3. NeurIPS
    Distributed Inference and Fine-tuning of Large Language Models Over The Internet
    Alexander Borzunov, Max Ryabinin, Artem Chumachenko, Dmitry Baranchuk, Tim Dettmers, Younes Belkada, Pavel Samygin, and Colin A Raffel
    In Neural Information Processing Systems, Dec 2023
  4. ACL Demo
    Petals: Collaborative Inference and Fine-tuning of Large Models
    Alexander Borzunov*Dmitry Baranchuk*, Tim Dettmers*, Maksim Riabinin*, Younes Belkada*, Artem Chumachenko, Pavel Samygin, and Colin Raffel
    In Association for Computational Linguistics (System Demonstrations), Jul 2023
  5. arXiv
    Towards Real-time Text-driven Image Manipulation with Unconditional Diffusion Models
    Nikita Starodubcev, Dmitry Baranchuk, Valentin Khrulkov, and Artem Babenko
    arXiv preprint arXiv:2304.04344, Apr 2023

2022

  1. ICLR
    Label-Efficient Semantic Segmentation with Diffusion Models
    Dmitry Baranchuk, Andrey Voynov, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko
    In International Conference on Learning Representations, May 2022
  2. NeurIPS Competition
    Results of the NeurIPS’21 Challenge on Billion-Scale Approximate Nearest Neighbor Search
    Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze, Artem Babenko, Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krishnaswamny, Gopal Srinivasa, Suhas Jayaram Subramanya, and Jingdong Wang
    In NeurIPS 2021 Competitions and Demonstrations Track, Dec 2022
  3. ICLR
    Graph-based Nearest Neighbor Search in Hyperbolic Spaces
    Liudmila Prokhorenkova, Dmitry Baranchuk, Nikolay Bogachev, Yury Demidovich, and Alexander Kolpakov
    In International Conference on Learning Representations, May 2022

2021

  1. INNF@ICML
    Distilling the Knowledge from Conditional Normalizing Flows
    Dmitry Baranchuk, Vladimir Aliev, and Artem Babenko
    In ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, Jul 2021
  2. AutoML@ICML
    Discovering Weight Initializers with Meta Learning
    Dmitry Baranchuk, and Artem Babenko
    In ICML Workshop on Automated Machine Learning (AutoML), Jul 2021

2020

  1. AISTATS
    GP-VAE: Deep Probabilistic Time Series Imputation
    Vincent Fortuin*Dmitry Baranchuk*, Gunnar Raetsch, and Stephan Mandt
    In International Conference on Artificial Intelligence and Statistics, Aug 2020

2019

  1. ICML
    Learning to Route in Similarity Graphs
    Dmitry Baranchuk, Dmitry Persiyanov, Anton Sinitsin, and Artem Babenko
    In International Conference on Machine Learning, Jun 2019
  2. arXiv
    Towards Similarity Graphs Constructed by Deep Reinforcement Learning
    Dmitry Baranchuk, and Artem Babenko
    Nov 2019

2018

  1. ECCV
    Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors
    Dmitry Baranchuk, Artem Babenko, and Yury Malkov
    In European Conference on Computer Vision (ECCV), Sep 2018